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SUMMARY OF EXPERIMENTAL HEAT-TRANSFER MEASUREMENTS
IN TURBULENT FLOW FOR A MACH NUMBER
RANGE FROM 0.87 TO 5.05

By Maurice J. Brevoort end Barbara D. Arabian
SUMMARY

Heat-transfer measurements have been made in turbulent flow at Mech
numbers varying from 0.87 to 5.05 and Reynolds numbers in the range from
1 x 10° to 9.5 X 108 through the use of an axielly symmetric annular
nozzle which consists of an inner sheped center body and an outer cylin-
dricel sleeve. Measurements taken along the outer sleeve gave essentlally
flat-plate results that are free from wall Interference end corner effects.

These results are presented in the form of Stanton number and recovery
factor as a function of Reynolds number. The Reynolds number is computed
for wall and free-stream conditions; that is, the viscosity is taken at
either the wall or the free-sitream temperature.

The results show that the Stanton number decreases with an increase
in Reynolds number and usually decreases with an increase in Mech number.
The recovery factor appears from these tests to be independent of Mach
number and mey be represented by a single curve for all Mach numbers in
the range of the tests.

TINTRODUCTION

The design of supersonic aircraft and missiles requires engineering
information sabout heat-transfer coefficients and temperature recovery
factors for supersonic speeds thet extend over e wide range of Reynolds
number. In references 1, 2, 3, 4, and 5, local turbulent-heat-transfer
messurements were presented for Mach numbers of 3.03, 2.06, 1.62, 0.87,
and 3.90, respectively.

The informstion presented in the present report consists of a sum-
mary of the work presented in the previous reports with additional test
datae from e seriles of tests at higher Reynolds numbers and at a Mach
number of 5.05.
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The range of Reynolds numbers for which measurements were obtained

is from approximately 1 X 106 to 9.5 X 108. The highest Reynolds numbers
were obtained with the lowest Mach numbers. The difference between wall
temperature and equilibrium temperature during the tests varied throughout
the tests and to some extent with the Mach number. The date presented in
the report were obtained at temperature differences of from 5° to LO° F.
The average value of the ratioc of inner surface wall temperature to free-
stream temperature TW/T°° varied with Mach nuwmber, the average values

being 1.0, 1.6, 1.8, 3.0, 4.0, and 5.5 for Mach numbers of 0.87, 1.62,
2.06, 3.0%, 3.90, and 5.05, respectively. ’ '

SYMBOLS
c specific heat of sleeve msterial, Btu/1b-°R
cp specific heat of air at constant pressure, Btu/1b-°R
g acceleration due to gravity, ft/sec2
h heat-transfer coefficlent, Btu/ftS-sec-R
k heat conductivity of wall, Btu/ft-sec-°R
1 wall thickness
M Mach number
Nyu Nusselt number, hx/k
Ngt, Stanton number, h/fpVepg
Py settling-chamber pressure
R Reynolds number, pvx/p
Tov average wall temperature, °R
Te effective stream air temperature at wall, some tempersture

which gives a thermal potential which is independent of
the heat-transfer coefficient h, °R

T, stagnation temperature, °R
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Ter inside-gurface temperature of nozzle sleeve, °Rr
Teo free-gtream temperature, °r

time, sec
v free-stream velocity, ft/sec
W specific weight of sleeve material, lb/sq £t of surface

exposed to alir flow
x longitudinal distence along sleeve, f+t (unless otherwise
indicated)
ecovery fact Te - To

r v actor —_—
Ny covery » Ty - To,
7 dynamic viscosity coefficient, lb-sec/sqg £t
o} free-stream density of air, slugs/cu £t

APPARATUS AND METHODS

The spparatus consisted of an axially symmetrlc anmular nozzle
which was directly connected to the settling chamber of one of the
blowdown jets of the Langley gas dynamics leboratory. The nozzle hed
a center body shaped to give the desired Mech number. Two center-body
series were employed, one for 8-inch- and the other for ll-inch-diameter .
sleeves. The 8-inch sleeves, 41 inches long, were constructed with two
wall thicknesses, 0.388 inch of carbon steel and 0.060 inch of stainless
steel. The ll-inch sleeve, 80 inches long, wes constructed of 0.750-inch-
thick carbon steel. The coordinates of both series of center bodies are
given in table I.

The sleeve was heavily insulated with glass wool. The effectiveness
of this Insulation was checked by a few tests made with the sleeve sur-
rounded by a vacuum. The resulis for these tests were in good agreement
with those made under normal testing conditions; accordingly, heat loss
by external convection and conduction was not consldered significant.
Radiation, which leads to & correction of less than 2 percent, was also
ignored.

A drawing of the test arrangement is shown in figure 1. In the fig-
ure & typical center body is shown in an 8-inch sleeve. Locetlons of the
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thermocouples and the static-pressure orifices are alsc shown. Flgure 2
shows the inlet and céenter-body support for the ll-Inch sleeve. A typl-
cal center body is shown in figure 3.

FPigure 4 shows the detail of thermocouple installation. The
thermocouple junction is located 0.060 inch from the inner surface of
the shell. The wires are No. 30 (0.010-inch diameter) copper-constanten
wire. Conduction is negligible along the wire. As indicated in fig-
ure 1, the thermocouples are in intimate contact with the metal soc that
thermal resistance at the Junction is also negligible.

Figure 5 shows the detail of a static-pressure-orifice installation.
By means of these orifices the Mach number was measured along the length
of the sleeve and checked at regular intervals around the sleeve. TFig-
ure 6 shows the measured Mach number distribution for all nozzles.

The temperature-recording equlipment consisted of synchronized high-
speed Brown recorders, each having 12 channels. The settling-chamber
thermocouple was connécted to eath recorder for comparison purposes.

The stagnation temperature was varied throughout the test to—give large
heat-transfer rates and both positive and negative-ratios. The recorders
are accurate to *1° F and are consistent to a value somewhat better than
1° F.

A typlcal stagnstion-temperature variation 1s presented in figure 7
together with the corresponding wall-temperature veariation for station 14.
These readings are for the 1ll-inch nozzle at a Mach number of 3.90 and a
settling-chamber pressure of 3535 lb/sq in. gage.

Throughout—the test the meximum pressures were limited to approxi-
mately 500 1b/sq in. The minimmm pressures were limlted by starting
conditions or the limit of accuracy. The first 20 seconds of -each test
were excluded from the computations beceuse thls time was required to
stabllize the pressure for the desired operating condition.

In figure 8 values of wall temperasture are plotted against longl-
tudinal distance along the cylinder for various times during the test.

These- values are needed to evaluaste the longltudinal conduction K QE%.
dx

In  order to avoid the effects of longitudinal conductlon, values to be
used in the final computation of-heat trensfer were confined to ranges

where dzT/dxe approached zero.
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REDUCTION OF DATA

The equatlons used in reducing the data are

| T - T, 1)
i
am /d:b
av,
- a2 2
h = we CE— (2)
_ h
St = pvcpg (3)

The method presented herein consists of selecting a recovery fac-
tor and then obtaining the value of T, from equation (1). For each

recovery factor that is selected, the corresponding quantity Ty - Te

d
is determined and then plotted against the heat input we —E%E. (See

fig. 9.) The curve comnecting these points 1s a gstralght line (eq. (2)).
The true values of T, and T, @re obtained when the line goes through

zero. The slope of this line 1s the value of h. This method of data
reduction is illustrated by figure 9, which shows the wvalues used in
determining 7,, and h for M = 3.90 &t station 1% for a settling-

chamber pressure of 353 lb/sq in. gage. The Stanton number corresponding
to the value of h dJdetermined from this figure is calculated from
equation (3).

The value of dTgy/dt wused in equation (2) is thet of the actual
thermocouple resding, whereas it should be the value associated with
the average wall temperature in the thickness of the sleeve at each
point. At the beginning of a test it is obvious that the value of dT/dt
is ‘oo high when the thermocouple is located at the heat-transfer surface
and too low when 1t is located at the insulsted surface. The product we
of the sleeve mass per unit area and the specific heat of the wall materisl
is accurate to *5 percent.

Under some peculiar conditions of high heat transfer end smell tem-
perature differences Ty - Te, it is possible to obtain heat-transfer

coefficients or Stanton numbers which have significant errors because
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the thermocouple 1s located at a polint inside the shell wall, 0.060 inch
from the surface instead of at the heated surface.

Hill (ref. 6) has developed a method for evaluating the heat trans-
fer under transient conditions for thick-walled bodies. When the heat
transfer is computed by the methods of reference 6 there is good agree-
ment with the simpler but less accurate method used herein for evaluating
the test data. The test at M = 0.87 and a settling-chamber pressure of
450 lb/sq_in. gage should have the largest error of any of the tests pre-
sented herein. The methods of reference 6 were used to obtain the wall
temperature from the measured temperature and from this information, the
heat transfer and Stanton number. Any deviations in the results computed
by reference 6 and the original computations were too small to warrant
correcting the final curves.

Figure 10, which is reproduced from reference 1, shows the variation
of Nusselt number CNNu = %?) with Reynolds number. When these date were

originally presented in this form, it was noted that the points for each
pressure tended to fall on & curve which at the-highest values of x
appeared to become asymptotic to & straight line.

The x-value used in the computations of these data had been arbi-
trarily selected as zero at the throat of the nozzle. Selection of this
value 1s equivaelent-to assuming that the Reynolds number is zero at that
point and that this is the transition point or polnt of initial turbulent
boundary layer. Clearly, the transition point tends to move upstream as
the stagnation pressure increases. On the basis of thils argument, the
x-values were adjusted so that all the data fell in a straight line.
Further, this adjustment to the values of x was made for all subsequent
tests and 1s noted in the filgures.

RESULTS AND DISCUSSION

The final results are presented as curves of the varietion of Stanton
number with Reynolds number (figs. 11 and 12). The results presented in
references 1 to 5 are included in these figures together with additional
results at high Reynolds numbers and for a Mach number of 5.05. The
Stanton number for each Mach number 1s presented once for s Reynolds
number based on wall conditions (fig. 11) and agaln for a Reynolds num-
ber based on free-stream conditions (fig. 12). Each Reynolds number
uses the-value of pv at free-stream condltions but the viscosity 1is
taken in regard to the particular condition of wall or free-stream
temperature. In figure-12 the curve calculated by the method of
Van Driest (ref. T7) at the test value of Tw/Tm is plotted along with

& curve faired through datum points from the present tests.
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An examination of the test results presented in figure 12 shows
that the data for Mach numbers of 3.03 and 3.90 fall somewhat above the
Van Driest curve. The considerations ocutlined in the sectlon entitled
"Reduction of Data" may explain the variation. This explanastion is espe-
cially likely in the case for the Mach number of 3.03 for which the
temperature dlfference T - Te Wwas smaller than in the other tests
and thus tended {to exasggeraste the effect of a small correction to the
wall temperature. -

Figures 13 and 1k give the recovery factor as a function of Reynolds
number for both wall and free-stream conditions. The absence of a system-
atic variation of recovery factor with Mach number suggests that a single
curve might be used for all the test Mach numbers. Such & curve is
plotted in figures 13 and 1k.

The effect of Mach number on the heat trensfer can be demonstrated
from the experimental data by comparing Stanton numbers from the tests
with the Stanton number for incompressible flow or M= 0 (ref. 7).

Such a comparison is given in flgure 15. In general, there 1is a decresasse
in Stanton number with an Incresse in Mach number and, further, the
results for a Mach number of 5.05 appear to have an anomslous variastion
with Reynolds number. The most likely end simplest explanation is that
these results were obtained in the transition region for M = 5.05.

CONCLUDING REMARKS

Heat-transfer measurements have been made in turbulent flow at Mach
numbers varying from 0.87 to 5.05 and Reynolds numbers in the range from
1 x 106 to 9.5 x 108 through the use of an axially symmetric smnular
nozzle which consists of sn inner shaped center body and an ocuter cylin-
drical sleeve. Measurements taken along the outer sleeve gave essentially
Plat-plate results that are free from wall interference and corner effects.

These results are presented in the form of Stanton number and recovery
factor as & function of Reynolds number. The Reynolds number is computed
for wall and free-stresm conditions; that is, the viscoslty is taken at
elther the wall or the free-stream temperature.

The results show that the Stenton number decreases with an incresase
i1n Reynolds number snd usually decreases with an increase in Mach number.
The recovery factor appears from these tests to be independent of Mach
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nuniber &nd msy be represented by a single curve for all Mach numbers
in the range of the tests.

Langley Aercnautical ILaboratory,

Nationael Advisory Committee for Aeromautics,
Langley Fileld, Va., Februsry 12, 1958.
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TABLE I.- CENTER~-BODY COORDINATES

() M = 0.87; 8-inch~dismeter sleeve

X, in. Radius, in.

-11.0 2.130
-9.0 2,700
~7.0 3.050
-5.0 3.250
=3.0 3.380
-1.0 3.450
0 3.47h
335.5 3.340
36.0 3.383

(b) M = 0.87; ll-inch-diemeter sleeve

x, in. Radius, in.

-9.0 2.750
-8.0 2.880
-7.0 3.100
3.450
=%.860
L .280
Lh.680
5.000
5.130
5.160
5.116
5.073
5.03%0
L .986
L.ok2
L.898
4.854
5.018

=N =1 W W 1
l\)OOgOOOOOI—'I\)\N-F‘\HO\
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TABLE I.- CENTER-BODY COORDINATES -~ Continued

(¢} M = 1.62; B-inch-diameter sleeve

Radius, in. X, in. Radius, in.
2.000 1.30 3.3401
2.000 1.4%0 3.3402
. 2.020 1..50 3.3317
. 2.100 1.60 3.%3238
. 2.500 1.70 3.3167
. 2.735 1.80 3.3103
. 2.970 1.90 35.30L7
.50 3.150 2.00 3.2997
. %.300 2.10 3.2955
.80 3.340 2.20 3.2920
.60 3.375 2.30 3.2891
10 3.400 2.40 3.2868
.20 3.425 2.50 %.2851
3.4375 2.60 3.283%9
.10 5 .436h 2.70 3.2831
.20 3.4337 2.80 3.2827
.30 3.4298 2.90 3.2825
.bo 3.h2hg 5.00 3.2720
.50 3.4190 10.00 3.2470
.60 3.4122 15.00 3.2220
.70 35,4045 20.00 3.1970
.80 3.3961 25.00 3.1720
.90 3.3871 30.00 3.1470
1. 3.3776 35.00 3.1220
1. 3.3680 38.625 3.1059
1.20 3.358L
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TABLE I.- CENTER-BODY COORDINATES - Continued

(d) M = 1.62; li-inch-diameter sleeve

x, in. Redius, in.
-9 2.750
-8 2.880
-7 3.100
-6 3.450
-5 3.860
-k L.280
-3 4.680
-2 5.000
-1 5.220
o) 5.3000°
.10 5.2979
.20 5.2925
.30 5.2848
40 5.2756
.50 5.2662
.60 5.2580
.70 5.2516
.80 5.2h71
.90 5.24L)
1.00 5.2L32
1..09 5.2428
5.00 5.179
10.00 5.15k
20.00 5.104
30.00 5.054
40.00 57004
50.00 h.o5h
60.00 L .00k
T70.00 1.854




12

NACA TN hL2hL8

TABLE I.- CENTER-BODY COORDINATES - Continued

(e) M = 2.06; 8-inch-diameter sleeve

X, in. Radius,.in. j %X, in Radius, in
-10.25 2.000 1.8 3.1787
b7 2.000 1.9 %.1618
“4.5 2.020 2.0 3.1456
=4.0 2.100 2.1 3.1303
-3.0 2.500 2.2 3.1157
-2.5 2.735 2.% %.1020
-2.0 2.970 2.4 %.0890
-1.5 %.150 2.5 3.0769
-1.0 3.300 2.6 3.0655
-.8 3.340 2.7 %.0550
-.6 3.375 2.8 3.0453
-.b 3.400 2.9 3,036k
-.2 3.425 3.0 3.0283
0 3.4375 3.1 3.0211
1 3 436k 3.2 5.0147
.2 3.4333 3.3 3,0091
-3 3.4280 3.4 3.0013
A4 3 . 420k 3.5 3,000k
5 %.4108 3.6 2.997h
.6 3.3990 3.7 2.9952
-7 3.3852 3.8 2.9939
.8 %.3696 3.9 2.9934
.9 3.3522 4.0 2.9924
i.0 %.33%6 5.0 2.9824
1.1 3.3141 10.0 2.9%24
1.2 5.2941 15.0 2.882h
1.3 3.2739 20.0 2.8324
1.4 %.2538 25.0 2.7824
1.5 3.2341 %0.0 2.7324
1.6 3.2149 3k.0 2.6924
1.7 3.1964 L 3k .250 2.6999
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TABLE TI.- CENTER-BODY COORDINATES - Continued

(f) M = 2.06; 1li-inch-diameter sleeve

X, in. Radius, in.

-10.25 2.750
-4.0 2.750
-3.5 2.850
-3.0 3.113
-2.5 3.475
-2.0 3.840
-1.5 L.240
-1.0 4.625

-.5 4.888
0 5.0000

k.9990
4 .9958

L .o00h
L4 .98%0

k.9733
4.9615

h.ok7T

h.9321

L.9148

L.8961

k. 7966

L.7081

4 .6%394
k.5908

k.5551

k.5151

hoyrs1

L.3951

k.3151

k. 2351

L.1551

L.or51

3.9951
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TABLE I.- CENTER-BODY COORDINATES -~ Continued

(g) M= 3.03; 8-inch-dlameter sleeve

X, in. Radius, in.

-10.25
-4.7
4.5
-4.0

.000
.000
.020
.100
.208
.380
.620
.893
.170
387
JpIsh Ty
482
.512
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TABLE I.- CENTER-BODY COORDINATES

- Continmued

i5

(h) ™ = 3.03; lli-inch-diameter sleeve
X, in. Radius, in. X, in. Radius, 1n.
~9.00 2.750 2.00 L.ehi7
-8.00 2.880 2.50 L .5485
-7.00 3.100 3.00 Lk .h4935
-6.00 3.450 3.k0 L. 4920
-5.00 %.860 3.50 L. hoiz
-4.00 k.280 h.00 L. 4872
-3.00 k.680 5.00 L Y792
-2.00 5.000 10.00 L . kxg92
-1.00 " 5.220 15.00 h.3992
o} 5.3000 20.00 L.3502
.10 5.2906 25.00 L.3192
.20 5.2645 30.00 Lk.2792
.30 5.2264 35.00 L.2392
Lo 5.1828 ko.00 L.1992
45 5.1604 k5.00 h.1592
.50 5.1381 50.00 L.1192
.60 5.004k 55.00 L.o792
(o] 5.0524 60.00 L4.0392
.80 5.0120 65.00 3.9992
.90 k . 9731 T0.00 3.9572
1.00 h.9%58 T72.50 Lk .5000
1.50 Lol
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TABLE I.- CENTER-BODY COORDINATES - Continued

(1) M = 3.90; 8-inch-diemeter sleeve

L] .
1O\

.

m&oqgmo%mbghbh

ot O\

WOWWPPPPOPOHEFFE
U O\l O\l

Radius, in. X, in. Radius, in.
.000 3.75 2.9555
.020 .00 2.8834
.120 k.50 2.7473
540 5.00 2.6221
.805 5.50 2.5067
.095 6.00 2.4002
.360 T7.00 2.2093
.568 8.00 2.0440
635 9.00 1.8995
690 10.00 17734
.T32 11.00 1.6647
.T60 12.00 1.5722
LTT07 1%.00 1.4950
LT640 14.00 1.4324
.Th30 15.00 %838

.T116 16.00
6739 17.00
.6289 18.00
STTL 18.782
L5203 19.00
4585 : 20.00
.3927 25.00
3237 30.00
.2520 35.00
.1786 37 .50
.1o42 40.50
.0295

A48 W8 T T W8 01 D8 A8 08 T 1O O8O DTOHE DT DT D D D 10 1O
PHHRHEHREHEHERRRR
W
Q
D
0




W NACA TN L2k

TABLE I.- CENTER-BODY COORDINATES - Continued

(3) M.= 3.90; ll-inch-diameter sleeve

x, in. Raedius, in. x, in Redius, in.
-9.0 2.750 9.0 3.361h
-8.0 2.880 10.0 3.2162
-7.0 3.100 11.0 3.0900
-6.0 3.450 12.0 %.9818
-5.0 3.860 13.0 2.8910
=L.0 4.280 1.0 2.816k
-3.0 4 .680 15.0 2.7576
-2.0 5.000 16.0 2.7138
-1.0 5.220 17.0 2.6845

- 0 5.3000 18.0 2.6686
.5 5.2792 18.7k 2.6649
. 1.0 5.2228 20.00 2.6562
1.5 5.1382 25.00 2.6212
2.0 5.0326 3%0.00 2.5862
2.5 L .9098 35.00 2.5512
3.0 . 7739 40.00 2.5162
3.5 }.6295 L5.00 2.4812
L.0 L 4806 50.00 2.4h62
k.5 k.3327 55.00 2.4112
5.0 h.1917 60.00 2.3762
6.0 3.9381 65.00 2.3412
7.0 3.7188 69.50 2.3377
8.0 3.5279 72.50 %.000
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TABLE TI.-~ CENTER-BODY COORDINATES - Concluded

(k)

M = 5.05; 11-inch-diameter sleeve

Radius, in.

-7.0

.

O-JUVVWNPPOPNOHFREHFHEFEE OFMNDWFAFOO

% .660
4.100
L.340
L .620
L.840
5,050
5.190
5.300
5.360
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\\ \ Four thermocouples ot stations
AN 0,6, 12,18, 24, and 30 apaced
\ 90" opart. Ome only at each
\ of the other efatlons. Tatal

178"~ thick- plate

\\ - L_' ccaum  fubs mumber of thermocouples, 36.
N / e
\ \/ One sleeve 0.388-Wnch woll thickness

~ T 7/ Ona slesve 0,060-inch wall ihickness

'y

Stagnation .\ EE | L2 1 g1 L 24l | 30 \
thermocouples R i T o B e S i i e
6.0.’4
~ 7875 =
o
alring n»«——/]r \—8_\ ﬂ
3 )
_]E/ o) [ I o 23 3l
/ '“' Z 4&!: pressure offices ot stations
[ L_s Mahogany 0,4, 11, 25, ond 3| spaced 9¢
F____“'.__._; tation O aanter body apart. One only at each of the
/ pther stotions. Total number of
pressury  orlfloes, 35.
47"

/ // . Seftting chamber

Figure 1.- Test arrangement. Dimensions are in inches.
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Figure 2.- Inlet and center-body support for

L-57-26T71
11-inch sleeve.
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Figure 5.- Typlcal center body. 1-57-2670




Each wire wropped and covered.
Both wires form one lead from
each thermocouple,

Insulation (ceramic)

_ Steel sleave (wall
o Wthlckness, 0.388")

Inner surface

Steel sleeve (3/32"
0.0. X 1/64 wall
thickness)

Tips of wires silver-
soldered together

Figure T- Thermocouple installation.
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Pressure tubes
(0.040" 0.D. X
0020" 1. D.,

stainless steel)

Silver

No. 4/0 taper pin. Reamed through
for 0.040" 0. D. stuinless - steal tubing.

solder
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Figure 5.- Static-pressure-orifice installation.
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Figure 11.- Continued.
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Figure 12.- Variation of local Stanton number with Reynolds number for corrected location of
x = 0. Viscosity determined at free-stream temperature.
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Figure 13.- Variation of recovery factor with Reynolds number for corrected location of x = O.

Viscosity determined for wall tempersture.
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